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Abstract 

Low-alloyed steels are typically exposed to additional case-hardening post-processing to improve the mechanical 
properties in the case area of the material for increased hardness and wear resistance. Another possibility for improving 
these material properties is provided by in-situ alloying using laser-based directed energy deposition of metals (DED-
LB/M). However, this requires basic understanding of the mechanisms when processing the base material. Within this 
work, different processing parameters for defect-free fabrication of the low-alloyed case-hardening steel Bainidur AM are 
presented. This includes the correlation of geometrical properties and internal defects like pores or cracks with the applied 
process parameters. Additional hardness measurements are performed for analyzing the influence of different processing 
strategies. It is found that a hardness gradient is formed and that the material hardness is depending on the process 
parameters used. Furthermore, the obtained material hardness is similar to the hardness values of conventionally 
bainitized samples obtained from literature. 
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1. Introduction 

Additive manufacturing technologies like powder bed fusion of metals using laser beam (PBF-LB/M) and 
direct energy deposition of metals using laser beam (DED-LB/M) are constantly gaining importance and 
relevance in industrial process chains [1]. Whereas the PBF-LB/M process is commonly used for the 
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manufacturing of geometrically highly complex products [2], DED-LB/M is mostly used for the repair or coating 
of parts [3]. However, over the last few years, the DED-LB/M technology has found an increasing interest in 
the field of additive manufacturing as near net-shape products with tailored material properties can be 
processed [4]. In DED-LB/M, the powder material is provided by a powder hopper and is transported into the 
process zone using a carrier gas stream and focused by a powder nozzle. A high-power laser is used for melting 
and bonding the metal to the substrate. By using several independent hoppers, different materials can be 
supplied into the processing zone, allowing for a flexible modification of the chemical composition of the 
specimen. The DED-LB/M process is characterized by high cooling rates compared to conventional 
manufacturing technologies like casting [5]. This favors the formation of a fine-grained and mostly dendritic 
microstructure, resulting in superior material properties compared to conventional products. 

Up to now, several different types of materials like iron-, titanium-, or aluminum-based alloys have been 
successfully manufactured using the DED-LB/M technology [6]. In the field of high-alloyed steels, this includes 
stainless steels (e.g. 316L)[7] and tool steels (e.g. 1.2343)[8, 9], for which a wide range of parameters can be 
found for the successful and nearly defect-free processing of these alloys in literature. In contrast, low-alloyed 
steels like carburizing and nitrating steels (e.g. 16MnCr5 or 20MnCr5) have only barely been processed by 
means of DED-LB/M. However, investigations on the processing of these alloys using PBF-LB/M show that 
samples can be fabricated successfully from these materials using laser-based AM technologies [10, 11]. This 
group of material is interesting due to their wide range of industrial use in the fields of bearing technology and 
gear applications. Providing a fundamental knowledge on the manufacturing process, worn or defect parts 
made from case-hardening steels can be repaired or coated using DED-LB/M.  

To tackle this information gap, fundamental investigations on the correlations between processing 
parameters and the geometrical properties of single weld tracks and single layer structures are studied within 
this work. Based on optical analysis, the weld track height and penetration depth as wells as the formed 
microstructure depending on the applied processing parameters are determined. Finally, the influence of 
different process parameters on the material hardness of the additively manufactured samples is determined 
for single- and multi-layer structures.  

2. Materials and Methods 

All experiments are performed on an ERLASER UNIVERSAL 50349 machine (ERLAS GmbH, Erlangen, 
Germany) with an integrated five-axis DED-LB/M cell. The laser-processing cell is equipped with a Laserline 
LDF 4000-4 4 kW diode laser with a characteristic wavelength of 900 - 1,080 nm (Laserline GmbH, Mülheim-
Kärlich, Germany). Based on an adjustable telescope lens system, the laser spot size can be varied from 1 mm 
to 3.4 mm. The laser cell is equipped with two independent powder hoppers for supplying the powder 
material. Argon of type 4.6 is used for both shielding and carrier gas. 

As powder material, the recently developed case-hardening steel Bainidur AM (Deutsche Edelstahlwerke 
Specialty Steel GmbH & Co. KG, Witten, Germany) is used. The powder morphology of the gas-atomized 
powder material is provided in Fig. 1.  
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Fig. 1. (a) Powder particle morphology and (b) particle size distribution of Bainidur AM 

Analysis of the particle size distribution shows d10, d50, and d90 values of 58.8, 80.8, and 100.4 µm, 
respectively. The powder consists of mainly spherical particles and some aspheric, peanut-shaped particles, 
which is suitable for the DED-LB/M process. In the first step, single weld tracks are manufactured with different 
laser powers, feed rates, laser spot diameters, and powder mass flows. The powder mass flow is determined 
experimentally by weighing the transported powder after a defined time of two minutes. Based on the 
obtained results for three independent measurements, the mass flow is determined in g/min. Shielding gas 
flow and carrier gas flow are set constant to 20 L/min and 4 L/min, respectively. Overlap between two weld 
tracks is maintained at 50 % of their single weld track width. Table 1 shows the investigated process parameter 
window. The samples are fabricated onto circular blanks (diameter 60 mm, thickness 3.5 mm) made from 
16MnCr5 (1.7131) steel.  

Table 1. Process parameters for DED-LB/M experiments 

Process parameter Values 

Laser power [W] 400, 500, 600, 700, 800 
Feed rate [mm/min] 400, 600, 800 
Powder mass flow [g/min] 2.55, 4.11, 5.79 
Spot size [mm] 1.5, 2.4 
Number of layers [n] 1, 4 
Shielding gas [L/min] 20 
Carrier gas [L/min] 4 
Overlap [%] 50 

 
All manufactured specimens are embedded in a cold embedding resin, polished to 1 µm, and etched using 

a 3-% Nital solution. Next, images of these cross-sections are made using an optical light microscopy from 
Zeiss. For weld tracks, the width and height as well as the welding penetration depth are determined. The 
information on the width of the weld tracks is then used for manufacturing multilayer quadratic specimens 
with an edge-length of 15 mm in x-y-direction. First, the inner hatching of the structure is fabricated by 
positioning several overlapping weld tracks next to each other. The offset between two tracks is set to 50 % of 
the weld track width. This leads to a varying number of weld tracks for the different process parameters when 
manufacturing the specimens. In the next step, the hatching is followed by four contour track. For multilayer 
samples, the building pattern is rotated by 90 °, thus changing the starting point for consecutive layers.  
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Again, the manufactured samples are prepared metallographically according to the previously mentioned 
approach. Furthermore, Vickers hardness is determined on polished cross-sections using a microhardness 
indenter of type HP30S (Hegewald & Peschke Meß- und Prüftechnik GmbH, Nossen, Germany). Hardness 
measurements are performed based on a multi-column grid. The grid has a defined offset between the 
measurement points in y- and z-direction. An exemplary sketch of the building pattern for DED-LB/M samples 
and the hardness measurement grid is provided in Fig. 2. 

 

 

Fig. 2. (a) Scan pattern and (b) hardness measurement grid (c) and four-layer DED-LB/M manufactured samples (600 W, 400 mm/min) 

The distance between two measurement points in y-direction is set constant to 2 mm. By this, the hardness 
inside one layer is represented. In z-direction, the offset between two measurement points is selected to be 
the height of the layer t. Both the lowest and highest determined hardness values of each layer are excluded 
from the analysis.  

3. Results and Discussion 

First, single weld tracks are manufactured for the presented parameter combinations. Microscopic analysis 
of cross-sections of these weld tracks shows that the geometrical properties like track width and track height 
are highly dependent on the applied processing strategy. An overview of these correlations for the powder 
mass flow of 2.55 g/min and two different spot sizes (dL = 1.5 mm and 2.4 mm) is shown Fig. 3.  

 

Fig. 3. Correlation between laser power and weld track width for different spot sizes of (a) 1.5 mm and (b) 2.4 mm 

The width of the weld track is highly dependent on both laser power and laser spot size. Here, a linear 
increase can be observed for an increased laser power within the investigated parameter range. This effect 
can be attributed to the increased size of the melt pool for higher laser powers. Furthermore, the size of the 
melt pool is also affected by the selected spot size. The width of the weld track again increases linearly for 
higher laser powers. In contrast to this, higher feed rates lead to a reduced weld track width. This can be 
attributed to the main effect that the size of the melt pool is lowered to the reduced line energy input for high 
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feed rates compared to low feed rates. Therefore, to meet the reduced weld track width, a higher laser power 
is recommended.  

In the next step, the influence of the powder mass flow on the weld track geometry is investigated. 
Therefore, the weld track and height for three different powder mass flow rates is compared in Fig. 4. 

 

 

Fig. 4. Dependencies between (a) laser power and weld track width (b) laser power and weld track height 

For comparison, the feed rate and laser spot size are kept constant at 400 mm/min and 1.5 mm, 
respectively. The investigation show that the width of the weld track is only barely depending on the powder 
mass flow. However, larger mass flows result in a higher build up rate of the weld tracks. Irregularities can be 
found for low laser powers in the range of 400 W when increasing the powder mass flow. These discrepancies 
are attributed to the fact that the supplied energy leads to an insufficient melting of the caught powder. For 
the powder mass flow m3, this can be observed throughout the entire height of the weld track. Here, a higher 
laser power is recommended to melt the supplied powder material.  

 
Multi-layer specimens 

Based on the obtained results, one-layer structures are manufactured for the three powder mass flows. An 
exemplary overview of one-layer specimen is presented in Fig. 5.  

 

Fig. 5. Dilution and heat-affected zone of one-layer specimens manufactured with different laser powers and powder mass flows (a) 
400 W, 2.55 g/min, (b) 600 W, 2.55 g/min, (c) 400 W, 4.46 g/min, and (d) 400 W, 6.32 g/min 
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From these images, it can be seen that a laser power of 400 W is too low for manufacturing structures 
additively as pores and non-molten powder can be found in the bonding area (Fig a), c), d)). Density analyses 
show a relative part density of > 99.7 % in the additively manufactured structure for a laser power above 
600 W. Below that, lower part densities are observed due to unmolten powder and defects in the bonding 
zone. Furthermore, due to the non-existent dilution zone, the occurring defect will propagate along build 
direction and lead to delamination of the layers. In contrast, specimens manufactured with a higher laser 
power (Fig. b)) possess a larger dilution zone, showing that laser powers below 600 W are barely feasible for 
manufacturing Bainidur AM samples by means of DED-LB/M. From these structures, the layer height is 
determined experimentally using optical light microscopy. The average layer height for different feed rates 
and powder mass flows is presented in Table 2.  

Table 2: Experimentally determined layer heights in µm for one-layered specimens for feed rates of 400 mm/min and 600 mm/min 

 m1 = 2.55 g/min m2 = 4.11 g/min m3 = 5.79 g/min 
v = 400 mm/min 450 µm 650 µm 700 µm 
v = 600 mm/min 350 µm 450 µm 550 µm 

 
It was found that the layer height is not or only barely affected by the spot size and the laser power. In 

contrast, feed rate and powder mass flow significantly affect the height of the layer. With different sizes of 
these structures, changes in material properties can be assumed, as the size of the melt pool and the 
corresponding cooling conditions change for different parameter sets. Therefore, multilayer specimens are 
manufactured for a laser power of 600 W, two feed rates of 400 and 600 mm/min, and a constant powder 
mass flow of 2.55 g/min. Fig. 6 provides optical images on etched cross-sections. 

 

 

Fig. 6. Microstructure formation along build direction for a) and b) 600 W, 400 mm/min and c) and d) 600 W, 600 mm/min 
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From the optical images a relative density above 99.7 % is observed for the additively manufactured 
structure, independent of the applied process parameters. Furthermore, differences in the microstructure can 
be identified for the different process parameters, as the strength of the etching is pronounced differently. In 
both cases, a mixed structure consisting of shapes similar to the pearlite grain and martensitic or bainitic phase 
are found. The formation of the martensitic or bainitic phase is favored by the high cooling rates of the DED-
LB/M process. When manufacturing multilayer specimens, the continuous reheating of the lower layers might 
surpass the bainite starting temperature, therefore supporting the formation of an ultra-fine bainitic phase. 
However, for fully proving this effect, additional investigation on the phase formation and the material 
hardness is necessary. 

 
Analysis of material hardness 

In a final step, the hardness of the additively manufactured specimens is determined for different 
processing strategies using the indentation tester. For one-layer samples, the material hardness is plotted from 
top surface towards substrate in Fig. 7. Different parameter combinations between 600 W and 800 W as well 
as 400 mm/min and 600 mm/min were used for fabricating these specimens. 

 

Fig. 7. Hardness gradient for DED-LB/M samples manufactured with different process parameter combinations 

Analyses of the hardness of the additively manufactured sample shows no obvious difference in material 
hardness for the different laser powers. However, when increasing the laser power, an increased hardness can 
be determined within the substrate. This is attributed to both mixing effects in the bonding zone due to a 
higher weld penetration depth and an energy-induced hardening. The increased carbon content of the 
Bainidur AM powder compared to the 16MnCr5 favors the hardening effects of the base material. When 
moving further into the substrate, a similar hardness is observed for both samples manufactured with the 
presented parameter set. Furthermore, changes in the material hardness can be observed for two different 
laser spot diameters. This effect is presented in Fig. 8.  

150

200

250

300

350

400

450

-0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4

Ha
rd

ne
ss

 in
 H

V

Distance from top layer in mm

600 W; 400 mm/min; 1.5 mm
800 W; 400 mm/min; 1.5 mm

DED-LB/M specimen Substrate



 LiM 2021 – 8 

 

Fig. 8. Material hardness gradient for two different spot sizes (1.5 and 2.4 mm) and a constant laser power and powder mass flow 

When increasing the laser spot, the width of the melt pool is increased. However, when maintaining the 
laser power constant, the weld penetration depth is lowered for larger spot sizes due to a reduced intensity. 
This leads to a larger surface area of the melt pool, resulting in a faster cooling of the liquid material. Thus, a 
fine-grain formation is supported, leading to the observable increase in material hardness for the top layers. 
When scaling the process towards four-layer structures, the effect can also be observed along build direction. 
An exemplary hardness gradient for two different process parameter sets is presented in Fig. 9.  

 

 

Fig. 9. Material hardness for four-layer specimens from top surface to substrate for a constant spot size (1,5 mm) and powder mass flow 
(2.55 g/min) 

For four-layered specimens, the maximum hardness in the top layer is increased compared to one-layer 
samples. This can be explained by the lower carbon content of the substrate material (16MnCr5). The 
difference in carbon is approximately 0.1 wt.-%, thus significantly reducing the achievable material hardness. 
When processing multi-layer specimens, no significant changes in material hardness are observed for the top 
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three layers. Here, a homogeneous hardness is determined. This can be attributed to the fast cooling of these 
layers, supporting the formation of a bainitic/martensitic phase. However, for lower layers close to the dilution 
zone, an increase in material hardness is detected for the higher laser power. One possible explanation for this 
effect is the increased weld penetration depth for a laser power of 800 W. When studying the isothermal 
transformation diagram of the similar bainitic alloy Bainidur 7980 CN (Deutsche Edelstahlwerke Specialty Steel 
GmbH & Co. KG, Witten, Germany), a very low holding time around one minute can be identified for the 
formation of the bainitic phase [12]. Thus, the increased laser power could potentially favor the formation of 
this phase, which can also be assumed from the hardness values of around 430 HV. However, for fully assessing 
these effects, further investigations on the microstructure formation along build direction are necessary, 
which will be performed in future work.  

4. Conclusion 

The present work shows results on the processing of Bainidur AM by means of DED-LB/M. Preceding 
investigations on the correlations between process parameters and weld track geometry are presented, laying 
the foundation for the generation of layer-by-layer structures. It was found that a defect-free manufacturing 
of samples is possible for different process parameter combinations for laser powers between 600 W and 
800 W. Laser powers below 600 W result in an insufficient melting of the powder material, leading to defects 
in the bonding zone.  

Furthermore, the material hardness was determined for different process parameter combinations. It was 
found that the hardness increases for larger spot sizes, which can be attributed to a faster cooling. For multi-
layered specimens, a higher material hardness is observed for higher laser powers in lower-lying layers. A 
possible reason for this is the phase transformation behavior of the at least partially bainitic microstructure. 
Due to the repetitive energy input into these layers, the bainite start temperature and the corresponding 
cooling times necessary for forming the bainitic phase might be surpassed. Future work will focus on the 
investigation of the microstructure formation along build direction for fully assessing the observed effect. 
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