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Abstract 

The joining technology of laser beam welding offers high flexibility and productivity. However, the small laser beam fo-
cus demands dependable quality assurance to ensure a sufficient connection of the parts. In keyhole welding of metal 
sheets in butt joint configuration, a gap is visible at the keyhole front, which correlates with the leading joint position. 
This process feature can be used for quality control by arranging a high-speed camera coaxially to the laser beam to 
monitor the keyhole. Here, we present a machine learning approach for a robust determination of the beam position 
relative to the joint based on the keyhole front morphology. For this purpose, we conducted a series of experiments to 
produce a set of labeled images, which are used to train a convolutional neural network. After training on the data, the 
network can predict the position of the keyhole front gap, setting the foundation for a quality control system. 
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1. Introduction  

Laser keyhole welding in comparison to other welding processes is characterized by a small heat affected 
zone due to the high intensity of the focused laser beam, offering welds with a high aspect ratio. However, the 
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small spot size demands low tolerances in terms of lateral beam position, especially in the case of welding 
parts in butt joint configuration. For this reason, reliable seam tracking techniques and systems for quality 
assurance are necessary to ensure a sufficient connection of the parts. Conventional seam tracking techniques 
use optical sensors to measure the joint geometry. For example optical coherence tomography (OCT) can be 
used to acquire the workpiece topography pre- and post-process enabling the tracking of the joint and meas-
ure the weld bead as shown by Dupriez and Truckenbrodt, 2016. However, OCT systems require a pronounced 
characteristic within the topography of the joint, which limits applicability in butt joint configuration with a 
technical zero gap. Another approach is to use additional illumination and a camera to detect the joint. Kos et 
al., 2019 exploited the fact that the gap in butt joint configuration reflects less light compared to the bare 
metal sheet allowing the detection of the joint by means of image processing. Disadvantages of both the OCT 
system and camera based approach with additional illumination is the pre-process measurement of the joint, 
which means that subsequent deviations due to thermal movement of the workpiece or lateral displacement 
of the processing optic cannot be compensated for as mentioned by Regaard et al., 2009. In addition, with 
these techniques, the actual beam position is not accessible during the process, resulting in a limited use for 
monitoring the connection quality. 

We identified a visible gap in the thermal emissions of the keyhole front when welding in butt joint config-
uration, which can be coaxially monitored with a high-speed camera. Since this gap correlates with the pre-
ceding joint gap, the feature can be used within a closed-loop control for beam positioning as shown in Dilger 
et al., 2020. However, the manifestation of the control feature depends on the melt dynamics at the keyhole 
front, mainly influenced by the process parameters. If the primary feature, the melt gap at the front, is less 
pronounced, our previously proposed algorithm in Dilger el al., 2020 cannot reliably determine the position. 
This shortcoming is addressed in this work by a machine learning approach, allowing the consideration of sec-
ondary features within the image. The approach proves to deliver a more reliable detection of the keyhole 
front gap independent of the keyhole shape and front gap morphology. 

2. Methods 

This section first describes the experimental setup and process for image data generation. Secondly, the 
procedure for data labeling is presented since we used a supervised learning approach. Finally, the machine 
learning method for predicting the position of the keyhole front gap is described.  

2.1. Experiments 

For the experiments we used the same setup described in a previous work in Dilger et al., 2020. The exper-
iments were conducted with a TruDisk6001 laser beam source with a wavelength of 1030 nm and a maximum 
output power of 6 kW. A Precitec YW52 processing optics with an imaging port for coaxial observation of the 
process zone was used for focusing the beam, resulting in a spot diameter of 600 µm. Relative movement 
between the laser beam and the workpiece was realized with a two-axis stage system (Aerotech Pro280LM). 
The thermal emissions of the process zone were imaged with a magnification of 2.15 and captured with a high-
speed camera (Mikrotron EoSens 3CXP) with a frame rate of 3 kHz at 512x512 pixels. 

To obtain a broad data basis with different keyhole shapes we varied the used materials and process pa-
rameters over a wide parameter space, listed in Table 1. The combination of laser power and feed rate was 
selected such that keyhole welding with a welding depth of at least 1 mm occurred. The metal sheets were 
arranged in a butt joint configuration with a technical zero gap. A total of 81 experiments were carried out 
with different parameter and material combinations. The beam path on the metal sheets was a diagonal line 
across the joint, as depicted in Fig. 1 (a). The weld length in y-direction was set to 100 mm, whereas the lateral 
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movement of the beam in x-direction across the joint gap was set to 0.8 mm. By this means, it is possible to 
generate an image data set with different and predefined beam positions relative to the joint, which is advan-
tageous regarding the data labeling procedure (see section 2.2). Fig. 1 (b) shows three coaxially acquired high-
speed images of the process zone at different positions with respect to the beam path. The respective beam 
position relative to the joint correlates with the gap position at the keyhole front.  

Table 1. Process parameters and materials used in the experiments. 

Process parameter / material  

Sheet thickness 1 and 3 mm 

Sheet material Stainless steel (1.4541), zinc coated steel (DX56) 

Laser power  1 – 6 kW 

Feed rate  33 – 200 mm s-1 

2.2. Data labeling procedure 

Form the acquired image data described in section 2.1 the positions of the keyhole front gap of each image 
have to be determined and integrated in a data set, to be used as ground truth within a convolutional neural 
network (CNN), see section 2.3. Since manual data labeling of a large number of images would be very costly 
and time-consuming, a semi-automated procedure was developed. At first, an image processing algorithm for 
an initial determination of the keyhole front gap positon was used. The algorithm calculates intensity profiles 
along circular arcs with a central angle of 100° and different radii aligned in feed direction. The position of the 
minimum intensity value within the profiles usually corresponds to the front gap and is therefore taken as gap 
position, provided it satisfies predefined thresholds. Since the intensity profiles are calculated in a polar coor-
dinate system, the respective coordinates of the minimum intensity value must be converted to Cartesian 
coordinates to determine the lateral offset. Considering the feed direction on the y-axis, the x-value of the 
calculated gap coordinates describes the offset between gap position and keyhole center or beam center. A 
detailed description of the image processing algorithm is given in Dilger et al., 2020. 

In Fig. 2, the lateral offset in micrometer is shown as a function of the image number for two experiments. 
If the image processing algorithm is able to detect the keyhole front gap, its position is indicated with a blue 
dot, while the red dots denote a lacking detection. The detected positions refer to the diagonal crossing of the 
joint during welding as described in section 2.1. Due to the differing visibility of the keyhole front gap, the 
quantity of the detected positions varies. Since the outcome of a machine learning algorithm would not im-
prove the detection if only the detected positions of the image processing algorithm are integrated in the 
labeled data set, the missing positions must be determined. For this reason, a linear function is fitted to the 

Fig. 1. (a) Laser beam path during the experiments with a weld length of 100 mm in y-direction and a lateral movement across the 

joint of 0.8 mm in x-direction. (b) Three coaxially acquired process images showing the keyhole with the control feature at the 

front marked with a green circle. The images are assigned to the respective beam positions in (a). 
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detected front gap positions as indicated by the solid line in Fig. 2. The fitting procedure takes the feed rate, 
the frame rate of the camera and the beam path used in the corresponding experiment into account. With the 
knowledge of these parameters, it is applicable to interpolate the missing gap positions with the fitted line. 
Additionally, potential erroneous detections are removed by this procedure. We used a fitting approach be-
cause the respective gap position could not be directly assigned to every image due to small deviations regard-
ing the clamping device, the beam path, and the starting point of the experiment. For labeling the image data, 
the gap position of the respective image number is deduced from the fitted line and is saved as absolute pixel 
value in vertical direction (x-direction within the used coordinate system in Fig. 1). To ensure the ground truth 
of the data set does not incorporate incorrect labels the images are further examined manually. For this, the 
gap positions are plotted into the images to verify that the detected positions match the visible front gap. The 
dataset cleaned by this procedure includes approximately 40,000 images.  

2.3. Machine Learning method 

For the improved detection method, CNN´s were chosen since this deep learning algorithm shows promis-
ing result for similar tasks as demonstrated by Gao and Zhang, 2014 and Zhang et al., 2019. Furthermore, their 
architecture is explicitly designed for image data as outlined by LeCun et al., 2015. To optimize the network 
structure different layer configurations and hyperparameter were investigated by comparing their perfor-
mance with each other. In addition, different training approaches were evaluated with and without progres-
sive resizing, which is explained below. In this work, we present the approach that showed the best prediction 
results. 

In this supervised learning method a model is trained for mapping the captured images to the correspond-
ing gap positions, which are determined as described in section 2.2. The target is to fit a model that reliably 
predicts the front gap position even for unknown data. The dataset was split randomly in 85 % training/vali-
dation set and 15 % test set. Training of the network was realized with progressive resizing, which can be used 
as a form of transfer learning to achieve better generalization and shorter training times, for example shown 
by Colangelo et al., 2020. In progressive resizing the CNN is trained at first with smaller images, which are then 
consecutively increased. To the prior trained network additional layers are added to be trained with the larger 
images. In the present work, the original images of size 512x512 pixels were reduced to sizes of 64x64, 128x128 
and 256x256 pixels, which are then used for training in this order. The labels, respectively the gap positions, 
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Fig. 2. Lateral offset determined by the image processing algorithm for two different experiments. Red dots indicate a lack of detection. 

The solid black line represents the result of the fitting procedure for data labeling. 
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were adjusted to the reduced image size accordingly. The input layer of the CNN consists of a convolutional 
layer with a shape according to the image size and a kernel size of 7x7. As pooling layer, maximal pooling with 
a filter size of 2x2 was used. Subsequently, several convolutional and maximal pooling layers were alternated, 
depending on the image size. The last layers of the network consist out of a flatten layer and dense layers. The 
RMSProp (root mean square propagation) optimizer was used to compile the model for training, for example 
applied by Mukkamala and Hein, 2017. The compiled models were evaluated in terms of mean absolute error 
(MAE) defined as: 
 

MAE =
1

𝑛
∑ |𝑌̂𝑖 − 𝑌𝑖|

𝑛

𝑖=1
 (1) 

 

where 𝑌̂𝑖  is the model prediction, 𝑌𝑖  is the corresponding target value in pixel and n is the number of data pairs. 
As deep learning library, we used TensorFlow, which was implemented by using the Keras Application Pro-
gramming Interface. 

3. Results and discussion  

As described in the previous section a CNN was trained with images of the process zone during keyhole 
welding acquired coaxially to the laser beam for the prediction of the front gap position. The results of the 
network configuration with the best prediction values are presented, trained with images of size 256x256 pix-
els and using progressive resizing. The training and validation MAE reached 1.5 pixel after training of the net-
work. Evaluating the trained network on the test set containing unknown image data even resulted in a MAE 
of 1.3 pixels. Since the gap dimension is mostly several pixels wide, this value is within an acceptable range to 
obtain a reliable determination of the gap position. Considering the reduction of the image size, the pixel size 
of 8 µm and the magnification of the imaging system, the MAE on the object side is calculated to 9.7 µm. Using 
a laser spot diameter of 600 µm and thus welding with a keyhole size of comparable dimensions, this MAE is 
sufficient to determine the front gap position. Fig. 3 shows representative images from the test set in which 
the labeled gap positions and the positions predicted by the CNN are indicated by a green and blue line, re-
spectively. The predicted gap positions agree very well with the labeled data for different keyhole shapes. 
Furthermore, the CNN correctly predicts the front gap position even for weakly pronounced front gaps, un-
derlining the high performance of the network.  

Fig. 3. Representative images from the test set with the respective label (green line) and network prediction (blue line) of the keyhole 

front gap position. 
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To investigate the CNN’s performance for the determination of the gap position for a complete weld exper-
iment, the predicted values for two experiments are shown as a function of the image number in Fig. 4. Here, 
Fig. 4 (a) represents an experiment with a noticeably and consistently pronounced keyhole front gap, while in 
Fig. 4 (b) the keyhole front gap varies between not visible and less visible as depicted by the process images. 
It must be mentioned that the analyzed images originate both from the training and test set as well as from 
data that was not included in the data basis. This means they contain images prior to initiation of the welding 
process, images in which the laser beam spot was not on the joint gap or images that were manually excluded 
from the data basis because no gap was visible to confirm a correct labeling by the fitting procedure. The 
period in which the beam focus was on the joint gap is shown with two vertical lines. Only in this range it is 
theoretically possible to determine the position of the joint gap relative to the beam. The graph in Fig. 4 (a) 
shows that the CNN can precisely predict the front gap position, as denoted by the linear slope of the predicted 
values in the relevant range (image number ~550 – 1,300). This behavior is consistent with the expectation 
due to the experimental procedure for image data generation described by a linear crossing of the joint. The 
graph in Fig. 4 (b), on the other hand, does not show the linear slope. However, a linear trend can be identified 
within the relevant range (image number ~1,000 – 2,500). This indicates that the network predicts the gap 
position at least for a part of the images correctly. The difference in the prediction performance for the two 
experiments derives from the varying visibility of the front gap. The more pronounced keyhole front gap in the 
first experiment results in better predictions of the network. Since in the second experiment the keyhole front 
gap is temporarily not visible, the predicted positions are less accurate. Images, where the gap is not visible, 
were excluded from the data basis because the label position could not be verified and therefore did not con-
tribute to the fitting of the network model. Nevertheless, it is interesting that the network detects the correct 
sign of the lateral offset and is only erroneous in the quantification of the gap position. For example, taking 
the images from 1,000 – 1,700, the network only predicts gap positions from 120 – 145 pixels, meaning it 
predicts values on the correct keyhole side considering the welding direction. The reason for this could be that 
the CNN considers secondary features within the images that also contain information about the position of 
the keyhole front gap. These features are inherent image features and are visually not accessible compared to 
the primary feature, the keyhole front gap. Since the image processing algorithm described in section 2.2 does 
not access these secondary features, the CNN seems to be superior in this task. For images outside the relevant 
range, the CNN predicts the gap positions randomly since it has not been trained with images that do not 
contain the keyhole front gap. For this reason, the network has to be adjusted if images without a front gap 
are also to be detected.   

Fig. 4. Predicted gap positions by the CNN for two experiments. (a) Since the keyhole front gap is more pronounced, the predicted gap 

positions coincide with the expectation. (b) The temporarily absent keyhole front gap results in less accurate predictions of the net-
work, however on the correct keyhole side considering the welding direction.
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4. Conclusion  

In the present paper, we have shown that by means of a knowledge-based image processing algorithm 
using a primary feature within the image, a machine learning approach based on CNNs can be developed that 
exploits image features that are not directly identifiable. These secondary features lead to a more reliable 
detection of the keyhole front gap, improving process-monitoring capabilities. Since the inherent image fea-
tures are not visually accessible, this procedure should be thoroughly investigated in future work to determine 
which image features contribute to the prediction process of the CNN. We plan to investigate the generaliza-
bility of the CNN for other processing optics and welding configurations. With that, the responsible image 
features are also to be examined, allowing potentially the adjustment of the system design or welding config-
uration to better visualize these features and thus further improve the performance of the network. In addi-
tion, we plan to adjust the network model to detect images without a visible keyhole front gap to minimize 
random predictions. Since the mechanism leading to a visible keyhole front gap are not yet fully understood, 
especially the influence of the different process parameters, we also plan to conduct further experiments to 
investigate this interaction. 
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