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Abstract 

Quality control of metal powders in powder bed-based additive manufacturing processes is currently very time-
consuming and costly and is not possible inline, i.e. during the process. The powder properties are of crucial importance 
for the quality of the components produced. A fast and complete inline characterization of metal powders is therefore 
desirable. In this work, a method for powder quality control based on hyperspectral imaging and machine learning is 
presented. The aim is to qualitatively distinguish different powder types and powder charges based on hyperspectral 
measurements, and to quantitatively predict some powder properties (size distribution and sphericity). The 
determination of powder type and charge was possible for the investigated samples with an accuracy of up to 100 %, 
and good results were also achieved for the quantitative prediction of powder properties. The results show that 
hyperspectral imaging appears to be a promising method for inline powder characterization for additive manufacturing 
processes. 
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1. Introduction 

Additive Manufacturing (AM) emerged in the last decade from a method for rapid prototyping to a 
promising candidate for the manufacturing of fully functional complex parts in serial production. A main 
challenge of the integration of AM into already established industrial process chains is caused by the still 
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limited standardization and a not fully established quality assurance along the process chain. This is a major 
topic in the industrialization process of AM (Steven et al. 2020).   

 As a starting point of the process chain often, the feedstock procurement for the processes is a 
major topic of the material related quality assurance. This is especially true for metal powder-based AM 
processes like the Laser Powder Bed Fusion (LPBF) or LMD (Laser Metal Deposition). The focus of the quality 
assurance of metal powders for AM lies on common powder characterization methods for the assessment of 
the morphology, the chemistry and the rheology. Quality control of metal powders for AM is a time-
consuming and cost-intensive process. In particular, AM processes in which the residual powder is reused, 
such as powder bed-based processes, require intensive monitoring of the powder quality. This is the key to 
identifying unwanted changes in powder quality due to oxidation, segregation and contamination, and to 
avoid impacts on the quality of the produced parts. Therefore, key performance indicators and new 
technologies for fast powder quality screening need to be identified, evaluated and established. 

 Hyper Spectral Imaging (HSI) is a promising method for the detection of qualitative and quantitative 
changes of powders. HSI allows the spatial and spectral properties of metal powders to be measured with 
high resolution and is therefore ideally suited for detecting chemical and morphological changes in the 
powders. Initial investigations have shown that it is possible, for example, to determine the degree of 
deterioration of various powder samples with high accuracy (Linaschke et al. 2019). Based on these results, 
the present paper describes the further development of this approach. 

 Therefore, a large amount of powder samples from different stages of the powder life cycle were 
collected and characterized with the common powder characterization methods and measured with two HSI 
setups in the visible and near-infrared (VNIR) spectral range. The collected data was then used to train, 
optimize and validate machine learning models for the prediction of powder properties from the 
hyperspectral measurements of the powders.  The powder properties considered are the size distribution of 
the powders and their sphericity. In addition, it was tried to distinguish two different powder materials, as 
well as two batches of the same powder material. This could enable a novel and fast screening method for 
the quality assurance of metal powders for AM. 

2. Materials and methods 

2.1. Powder sample preparation 

The powders investigated in the project are one batch of the steel material 316L (1.4404) and two 
batches of the nickel-based alloy Inconel718 (2.4668). The 1st batch of the Inconel 718 consists of 25 samples 
and each sample was measured before and after sieving. The 2nd batch contains 10 samples for each sieving 
condition. For the 316L powder 14 samples for each sieving condition were measured.  

 Both materials are two powders currently frequently used in industry in the laser melting process. Both 
their application possibilities, the processability in the process and the already defined material properties of 
the AM material result in this industrial use.  

316L describes stainless, austenitic chromium-nickel-molybdenum steels, which have good resistance in 
non-oxidizing acids and chlorine-containing media.  Due to its chemical composition, the material is a 
corrosion-resistant metal alloy. 316L differs from 316 in that it has lower carbon content.  

Due to its good heat-resistant properties (corrosion resistance; high tensile, fatigue, creep and fracture 
strength up to 700°C), the nickel alloy Inconel718 is increasingly used in energy technology (e.g., exhaust gas 
components in gas turbine construction), the oil and gas industry, aerospace and racing. The grain size 
distribution is generally used in the range of 15 to 45 µm for laser melting systems. The best possible 
spherical particle shape and powder flowability for the respective equipment should be achieved.  
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To obtain measurement data that is as realistic as possible powder samples were taken at regular base 
from ongoing production operations after each building process. The systems used for the processing are 
laser melting systems from the companies EOS (EOS M 290, EOS GmbH, Krailling, Germany) and SLM 
Solutions (SLM 280, SLM Solutions Group AG, Lübeck, Germany). To include the influence of the sieving of 
the powder before reuse in the sampling, the powder samples were taken in the construction space and 
after sieving. The powder samples were collected in two ways: On the one hand, containers were made in 
the build process and the powder was enclosed directly. On the other hand, powder samples were taken 
after the process with a specially made sampler (Bürkle GmbH, Bad Bellingen, Germany) consisting of a 
multi-part, double-walled rotatable tube construction (Fig. 1). By arranging three chambers one above the 
other, three sample volumes of approx. 28g each can be taken simultaneously at different heights at the 
same build platform position.  

For each powder the information provided by the powder manufacturer such as powder batch, fraction 
and material, as well as the sampling time, the number of construction jobs carried out, machine information 
and any additional information such as the condition (sieved, unsieved) was logged. This metadata is 
recorded sample-specifically in a database, the so called powder information management system (PIMS). At 
the time of writing, approx. 100 powder samples are available for characterization.  

 

 

2.2. Powder sample characterization 

The properties considered and the characterization methods for the acquisition of the powder properties 
are the determination of the particle morphology via Dynamic image analysis with Camsizer X2 (Retsch 
Microtrac, Germany, Haan) and the assessment of the chemical composition via EDS and oxidation with 
carrier hot gas extraction (Inductar EL, Elementar Analysensysteme GmbH, Langenselbold, Germany). These 
properties have a significant influence on the rheology of the powders. Therefore, the rheology in the matter 
of the flow rate and the shear properties was also measured via a FT4-Powder-rheometer from Freemantech 
(Tewkesbury, UK).  

Especially the application of the dynamic image analysis with the Camsizer X2 enables a comprehensive 
determination of morphological parameters of the powder compared to other methods like the more 
established laser diffraction spectroscopy. Besides the characteristic particle diameter quantile d10, d50 and 
d90, also other shape parameters like the sphericity (SPHT3), symmetry and particle aspect ratio can be 
measured.  

All data obtained from the powder reference measurements as well as the meta data of the powders was 
saved in a special database of powder properties (PIMS, see chapter 2.5) designed with interfaces for data 
export and visualization. 

Fig. 1. Picture of the special powder sampler. 
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Only the morphological powder properties (d10, d50, d90 and spht3) were considered for further 
analysis. For the other powder properties, there were still no or only very few differences between the 
powder materials, or not enough measurements were carried out yet. However, these properties will also be 
included in the investigation in the future. 

2.3. Hyperspectral imaging 

The hyperspectral measurement of the powders is performed with two different pushbroom HSI 
measuring systems with a diffuse halogen illumination. A schematic representation of the system is shown in 
Fig. 2. The system is equipped with a VNIR HSI camera (Hyperspec-VNIR, Headwall Photonics Inc., Bolton, 
MA, USA). The VNIR camera is equipped with an EMCCD detector with 1004 × 1002 pixels (Luca R 604, Andor 
Technology Ltd., Belfast, UK) with a wavelength range between 400 nm and 1000 nm.  The two used systems 
differ in terms of the lens used. One system, called VNIR-HSI from here on, is equipped with a Xenoplan 23 
mm f/1.4 lens (Jos. Schneider Optische Werke, Bad Kreuznach, Germany). The other system, called mVNIR-
HSI, is equipped with a telecentric lens with fixed working distance of 86 mm (S5LPJ2426, Sill Optics, 
Germany). The main difference between the two systems is therefore the FOV and thus the spatial 
resolution of the measurements.  

The lighting for the measurement is provided by 6 halogen lamps with a power of 25 W each. The diffuse 
illumination of the samples is done by an integration tube made of Spectralon (Labsphere Inc., North Sutton, 
NH, USA). The movement of the samples is controlled by a linear stage (VT 80, PI Micos, Eschbach, 
Germany). The integration and the control of the system components, as well as and the data acquisition is 
carried out by the dedicated HSI software suite imanto®pro (Fraunhofer IWS, Dresden, Germany). 

To avoid irregularities in the lighting and to eliminate the influence of dark current, a white and a dark 
correction for each wavelength according to Eq. 1 was carried out.   

Ic(λ) =
Io(λ) − Id(λ)

Iw(λ) − Id(λ)
 (1) 

Ic is the corrected image and Io the original image for the wavelength λ. Id is the dark signal recorded with 
the light source switched off and the lens covered, and Iw is the white reference. For the white reference (Iw), 
a Spectralon plate was recorded under the same measuring conditions as the original image.   

 
Fig. 2. Schematic representation of the hyperspectral imaging system. HSI: VNIR or NIR HSI camera. O: optics of the HSI camera. DL: 
diffuse halogen lighting. MU: motion unit. 
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Each powder sample was measured with both HSI systems. Two measurements were made per sample 
using the VNIR-HSI system and three measurements were made using the mVNIR-HSI system. For the 
measurements, the metal powder was placed in a sample holder. This is a metal plate with a 50 x 50 x 5 mm 
cavity into which the powder can be filled (see Fig. 3). Before the measurement, the powder was smoothed 
with a silicone lip, similar to the process that takes place in an LPBF system. 

 

 
Fig. 3. Picture of the sample holder with powder and silicone lip. 

For the VNIR-HSI system the measurements were performed with a working distance of 250 mm, an 
exposure time of 7 ms, a recording frequency of 40 Hz and 4× binning in the spectral dimension. This results 
in a field of view (FOV) of ~ 90 mm, a lateral pixel resolution of ~ 90 μm, and a spectral resolution of ~ 3 nm. 
For the mVNIR-HSI system the measurements were performed with a working distance of 86 mm, an 
exposure time of 30 ms, a recording frequency of 20 Hz and 4× binning in the spectral dimension. This results 
in a FOV of ~ 5 mm, a lateral pixel resolution of ~ 5 μm, and a spectral resolution of ~ 3 nm. For both systems 
the advance speed of the sample was set to obtain square pixels and therefore the same spatial resolution in 
both directions. The result of each measurement was a hypercube with 191 spectral bands between 400 nm 
and 1000 nm for both systems. The spatial size of the hypercubes is 400 x 400 pixel for the VNIR and 
1000x1000 pixel for the mVNIR measurement. Figure 4 shows example measurements of a new and an often 
used Inconel718 powder measured with the VNIR- and the mVNIR-HSI system respectively. It is apparent 
that there are differences between the new and the used powder in the texture of the measurements as 
well as in the mean spectra. 
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Fig. 4. Examples of hyperspectral measurements with the VNIR-HSI setup (top) and the mVNIR-HSI setup (bottom) of a new and an 
often used Inconel718 powder and the mean spectra and the variance of the measured area. The images on the left show the colour 
coded reflectivity at a wavelength of 700 nm. 

2.4. Data evaluation and model training 

For each powder measurement a data set of 30.5 million (VNIR measurement) respectively 191 million 
(for the mVNIR measurement) data points was recorded. This data cannot be used directly to train machine 
learning models, because of the high redundancy of the data. Therefore, the first step in data evaluation is to 
compress the data. Therefore, the spectral information and the texture information of the hyperspectral 
measurements are considered independently of each other. To determine the spectral information, the 
mean spectrum is calculated for each hypercube. To determine the texture information, the wavelength 
image at which the hyperspectral measurement has the greatest sharpness was determined first. This was 
accomplished selecting the wavelength image with the highest mean variance in the spectral range from 
500 nm to 800 nm.  

To compress the textural information of the grayscale images further, two methods were used: rotational 
invariant local binary patterns (LBP, (Bouwmans et al. 2016)) and the discrete wavelet transform (DWT, 
(Mallat 1989)). For the LBP different values for the neighbour points p and the spatial resolution r were used. 
For the DWT the level of decomposition l and the used wavelet were also varied. The optimal values for 
those values were selected automatically using hyperparameter optimization. To vectorise the results of the 
DWT decomposition, for each image of detail coefficients the mean, the variance and the Shannon entropy 
H(x) was calculated according to Eq. 2: 

𝐻(𝑥) =  − ∑ 𝑝𝑖log2𝑝𝑖

𝑛

𝑖=1

 
(2) 

Where pi is the occurrence probability of a certain value of the detail coefficients. 
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To further unify and structure the spectral and texture data, a principal component analysis (PCA) was 
also performed before the training of the machine learning algorithms. The optimal number of principal 
components was again determined by hyperparameter optimization. 

The compressed spectral and textural data for each hypercube was then used as input data for the 
machine learning models. The goal of these models is to classify different powder types and batches, as well 
as to predict the powder size (d10, d50 and d90) and the sphericity (spht3) from the hyperspectral 
measurements. The algorithm used depends on the type of target variable. For the discrete target variables 
powder type and powder batch (classification problems), logistic regression (LR, (Hosmer und Lemeshow 
2087)) was used. For the continuous target variables d10, d50, d90 and spht3 (regression problems), 
ElasticNet (EN, (Zou und Hastie 2005)) regression was used. For the hyperparameter optimization and the 
validation of the models 5fold nested cross-validation was used. Each model was trained tree times to 
minimize random variations. 

The hyperparameter optimization was performed using random search (RS, (Bergstra und Bengio 2012)) 
over 30 runs. This means that the hyperparameters of the algorithms were randomly varied thirty times and 
the best model was selected. A hyperparameter is a parameter whose value is used to control a machine 
learning model and can have a large influence on the model performance. The considered hyperparameters 
are shown in Table A. 1. To compare the obtained models the RMSE and R2 for the regression models 
respectively the balanced accuracy for the classification models were calculated and compared. 

The RMSE is the root mean squared error and is calculated using Eq. 3: 

RMSE =  √
∑ (𝑦̂𝑖

𝑛
𝑖=1 − 𝑦𝑖)

𝑛
 

(3) 

Where ŷ and y are the true and the predicted target values and n is the number of target values. 
The balanced accuracy is calculated using Eg.4: 

𝐴𝑐𝑐 =  
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
 

(4) 

Where TPR is the true positive rate and TNR is the true negative rate of the classification. 
 
The training was done for the VNIR and the mVNIR data separately. For each target variable (powder typ, 

powder batch, d10, d50, d90 and spht3) four models using different datasets were trained:  

• only using the spectral features (spec) 

• only using the LBP features (LBP) 

• only using the DWT features (DWT) 

• and using all features (all) 
To use all features for training, the results of the PCAs for the spec, the DWT and the LBP data were 

combined to one feature vector and used as input data to train the machine learning models. 

2.5. Powder Information Management System  

The hyperspectral measurements and the ground truth reference data of the powders were stored in a 
central database, the powder information management system (PIMS). Data integration is a crucial issue in 
the environments of heterogeneous material characterization data. The PIMS presents a database 
architecture which implements knowledge discovery from the data process. The solution allows the 
integration of any data sources and implementation of analytical methods in one database environment. 
User might track and manage sub database (samples, devices, probes, materials, stock, projects, image 
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repositories, sensors) and link, cross-search their results (raw data) between those databases. Once data is 
ready to be pulled out of the system, there are easily accessible and configurable reports and exports to 
statistical and machine, deep learning software applications. The PIMS as an image database is a cloud-
hosted with data entry performed on a web-based interface.  

3. Results and discussion 

3.1. Powder sample overview and measured properties 

A total of 100 powder samples were characterized using the methods described in chapter 2.2 to obtain 
ground truth values for the HSI measurements. The characterization was limited to the morphological 
parameters of the powders: the size distribution d10, d50 and d90, the spherizity as well as the symmetry 
and the aspect ratio of the powders. To visualize the results of the morphological characterization of the 
powders, principal component analysis (PCA) was performed on the results received. The results of the PCA 
show that it is possible to distinguish the 316L and the Inconel718 powders based on their morphological 
properties (see Fig. 5). The differences between the different Inconel718 powder batches and the sieved and 
unsieved powders are less pronounced but visible. In summary, the mophological differences within a 
powder material are much less pronounced than the differences between the powder materials 316L and 
Inconel718. 

 

Fig. 5. Principal Component Analysis of the morphological properties  

3.2. Results of modeling using machine learning 

3.2.1. Classification of powder type  
 
In a first step, it was studied whether it is possible to distinguish different powder materials on the basis 

of hyperspectral measurements and which features (spectra, texture) are best suited for this purpose. For 
the investigations, the powder materials Inconel718 (Ni alloy) and 316L (stainless steel) were considered. 
The powders investigated come from different processing cycles, and the Inconel718 powders are powders 
from two different batches. Table 1 shows the balanced accuracy for the cross validation of the optimized 
classification models and  
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Fig. 6 shows the confusion matrix for the best found model for the VNIR and the mVNIR data respectively. 
The best accuracies are obtained for both the VNIR measurements and the mVNIR measurements for the 

spec data and are 100 % and 99.6 % respectively. It is therefore possible to predict the material of the 
powders on the basis of their spectral properties. If the texture is considered, the accuracy of the prediction 
is lower and a more differentiated picture is observed. For the LBP data, especially for the VNIR 
measurements, only a relatively low accuracy of 68 % is achieved. For the mVNIR measurement, the accuracy 
increases to 90.5 %. This can be explained by the significantly higher spatial resolution and thus the higher 
information content of the mVNIR measurements. For the DWT data, a relatively good accuracy of 96.4 % 
(VNIR) and 98.8 % (mVNIR) can be achieved for both measurements. The results show that the powders can 
also be distinguished by their texture and that it is therefore possible to predict the powder material using 
the texture. Furthermore, the DWT method is shown to be more suitable for the parameterization of these 
differences. If the entire data is used for classification (all), the accuracy of the prediction is reduced slightly. 
The reason for this is the higher number of features that are included in the model training. This increases 
the dimensionality of the problem, which can lead to an increased overfitting of the trained models. As a 
result, these models achieve a lower accuracy in the prediction, which decreases the accuracy of the cross-
validation. 

Table 1. Mean balanced accuracy for the cross validation of the best found classification models for the prediction of the powder type. 
The best accuracy is underlined. The standard deviation of the accuracy was omitted for clarity. 

data Acc(VNIR) [%] Acc(mVNIR) [%] 

spec 100.0 99.6 

LBP 68.0 90.5 

DWT 96.4 98.8 

all 99.9 99.3 

 
VNIR mVNIR 
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Fig. 6. Confusion matrices for the best found classification models for the prediction of the powder type for the VNIR (left) and the 
mVNIR (right) measurements. 

3.2.2. Classification of powder batch  
 
After the successful classification of the powders investigated with regard to the powder material, the 

next step is to investigate whether it is also possible to distinguish between different powder batches of the 
same powder material.  For this analysis, only the Inconel718 powders were considered, of which 50 samples 
belong to one batch (batch 1) and 20 samples to another batch (batch 2).  

Table 2 shows the mean balanced accuracy for the cross validation of the optimized classification models 
and  

VNIR mVNIR 

  
Fig. 7 shows the confusion matrix for the best found model for the VNIR and the mVNIR data respectively. 

The results are very similar to those obtained for the prediction of the powder material. With the spectral 
data (spec), a prediction of the powder batch is possible with an accuracy of about 100% for both the VNIR 
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and the mVNIR measurements. When using the texture data of the measurements, the accuracy is reduced 
to 90.1 % (VNIR, DWT) and 96.2 % (mVNIR, DWT), but is still in a promising range. Again, better classification 
accuracies are obtained with the DWT data compared to the LBP data.  

It can therefore be concluded that the powders of the two Inconel718 batches under investigation differ 
in terms of both their spectral and their texture properties, and that classification is therefore possible on 
the basis of the hyperspectral measurements. 

Table 2. Mean balanced accuracy for the cross validation of the best found classification models for the predicition of the powder type. 
The best accuracy is underlined. The standard deviation of the accuracy was omitted for clarity. 

data Acc(VNIR) [%] Acc(mVNIR) [%] 

spec 100.0 99.9 

LBP 77.9 96.0 

DWT 90.1 96.2 

all 100.0 99.9 

 

VNIR mVNIR 

  
Fig. 7. Confusion matrices for the best found classification models for the prediction of the powder batch for the VNIR (left) and the 
mVNIR (right) measurements. 1: Batch 1. 2: Batch 2. 

3.2.3. Prediction of the powder size 
 
After demonstrating that it is possible to qualitatively distinguish powders in regard to their material and 

to differentiate between powder batches using hyperspectral measurements, the next step is to try to 
quantitatively predict properties of the powders. First, the size distribution of the powders, expressed by the 
values d10, d50, and d90, is considered. 

Table 3 shows the mean RMSECV for the cross validation of the optimized regression models and Fig. 8 
shows the regression plot for the best found model for the VNIR and the mVNIR data respectively. It can be 
seen that lower RMSECV values are obtained for the mVNIR data than for the VNIR data, which can be 
explained by the significantly higher spatial resolution of these measurements. At around 5 μm, the 
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resolution is within the range of the actual size of the powder particles. The best RMSECV values are 
obtained with 0.577 (d10), 0.814 (d50) and 0.851 (d90) using all data (all), which shows that for the 
prediction of the powder size distribution both the spectral and the texture information of the hyperspectral 
measurements are needed. The regression plot (Fig. 8, right) shows a clear correlation of the measured and 
predicted d10 values (R2 = 0.65). This is also reflected in the fact that relatively similar RMSECV values are 
obtained when considering the different data sets (spec, LBP and DWT) separately. Furthermore, it can be 
seen that the RMSECV values increase from d10 to d90, which can be explained by the increase in the range 
of values for each parameter, which leads to higher RMSE values, even if the model has the same quality. 

The results for the VNIR data are significantly worse especially when the texture features (LBP and DWT) 
are considered. This shows that the regression here is mainly based on the fact that the powder samples 
considered (Inconel718 and 316L) differ in terms of their size distribution (see chapter 3.1). The regression 
model therefore mainly recognizes these two powder types (as already shown in chapter 3.2.1), which are 
correlated with the size distribution. A real prediction of the powder size from the hyperspectral 
measurements therefore does not seem to be possible. This is also indicated by the regression plot (Fig. 8, 
left), which shows no clear correlation between the measured and predicted d10 values (R2 = 0.59) and a 
clustering of the powder materials. 
In summary, there is a correlation of the mVNIR measurements to the size distribution of the powders 
considered and therefore the size distribution can be predicted from the mVNIR measurements with 
relatively low error. The high spatial resolution of the measurements seems to be crucial for the prediction, 
since no good correlation to the size distribution is obtained for the VNIR data. The spectral information also 
seems to be correlated with the size distribution, but there is probably a co-correlation between powder 
type, powder size distribution and the spectral reflectance of the powders. For a more detailed investigation, 
more powders from different materials and with different size distributions need to be studied. 

Table 3. Mean RMSE for the cross validation of the best found regression models for the prediction of the powder size d10, d50 and 
d90. The best RMSE for each parameter is underlined. The standard deviation of the accuracy was omitted for clarity. 

 RMSE(VNIR) RMSE(mVNIR) 

data d10 d50 d90 d10 d50 d90 

spec 0.654 0.905 1.1695 0.662 0.815 1.229 

LBP 1.552 1.451 1.280 0.763 0.894 0.957 

DWT 1.066 1.175 1.343 0.712 0.867 1.038 

all 0.680 0.928 1.099 0.577 0.814 0.851 
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VNIR mVNIR 

  
Fig. 8. Regression plots for the best found models for the prediction of the powder size d10 for the VNIR (left) and the mVNIR (right) 
measurements. The plots for d50 and d90 show a similar behaviour. 

3.2.4. Prediction of the powder sphericity 
 
The last aspect that was investigated is the prediction of the sphericity of the powder material from the 

hyperspectral measurements. As shown in chapter 3.1, there is a clear difference in sphericity between the 
Inconel718 and 316L powders. It can therefore also be assumed here that there is a co-correlation between 
powder material, reflectivity and sphericity and that the results obtained can only be used to a somewhat 
limited extent. However, there are a small number of 316L powders whose sphericity is in the range of the 
Inconel718 powders. If the sphericity of these powders can be predicted well, this indicates that direct 
prediction of sphericity from the HSI data is possible. 

The results show that the best prediction results are again obtained using all data (all). This is true for 
both the VNIR and the mVNIR data. The RMSE values for the mVNIR data are slightly better for the VNIR data 
(0.259 vs. 0.236). But the regression plots show that there is clustering of the powder materials for the VNIR 
data (Fig. 9, left). The 316L powders with low sphericity are not predicted correctly and have a large 
prediction error. For the mVNIR data (Fig. 9, left), however, the sphericity of these powder samples is 
predicted better and the prediction error is smaller.  

Thus, for both data sets, there is a correlation between HSI measurements and the sphericity of the 
powders, which seems to be in part caused by the co-correlation of powder material and sphericity. In the 
mVNIR data, however, there also appears to be an actual correlation between HSI measurements and 
sphericity. Again, more powders from different materials and with different sphericity should be investigated 
to validate the results. 
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Table 4. Mean RMSE for the cross validation of the best found regression models for the predicition of the powder sphericity spht3. The 
best RMSE is underlined. The standard deviation of the accuracy was omitted for clarity. 

data RMSE(VNIR) *10-4 RMSE(mVNIR) *10-4 

spec 0.267 0.270 

LBP 1.197 0.360 

DWT 0.489 0.320 

all 0.259 0.236 

 

VNIR mVNIR 

  
Fig. 9. Regression plots for the best found models for the prediction of the powder sphericity spht3 for the VNIR (left) and the mVNIR 
(right) measurements. 

4. Conclusion and Outlook 

In this work, the use of hyperspectral imaging in the VNIR spectral range for the fast, non-contact and 
inline-capable characterization of metal powders from AM was demonstrated. It was shown that it is 
possible to distinguish different powder types (316L and Inconel718) as well as powders of different batches 
(Inconel718) with very high accuracies. Furthermore, it is possible to predict certain morphological 
properties of the powder samples on the basis of the hyperspectral measurements. This could be shown for 
the size distribution (d10, d50 and d90) as well as for the sphericity of the powder particles. It was shown 
that both the spectral properties and the texture of the powders investigated are correlated with the 
powder properties. In addition, better results tended to be obtained with the high-resolution HSI 
measurements. In the future, the robustness and the applicability of the prediction models to other puvler 
materials will be investigated. In addition, attempts will be made to predict other properties such as the 
rheology and the chemical properties of the powders.  

In the future, the developed method could be used in the series production of powder-based AM 
processes. In these processes, usually only one powder is used, and the HSI-based powder characterization 
could enable continuous monitoring of the powder quality. For example, differences between powder 
batches from different manufacturers or degradation of powder properties during production could be 
detected without the need for time-consuming and labor-intensive atline powder quality checks. In the long 
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term, the method could also be used to control the AM process, for example to adapt the process 
parameters to the properties of the used powder. In further development steps the capabilities of the HSI 
can also be used for in-situ measurements of the powder bed quality in powder bed processes with respect 
to segregation and contamination. 
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Appendix A. Optimized Hyperparameters for machine learning models 

Table A. 1. Optimized hyperparameters and optimization range. 

Algorithm / preprocessing step parameter range 

spec 
normalization L1, L2, SNV 

PCs for PCA 2 - 8  

LBP 

radius r 3, 7, 11, 15 

points p 8, 24 

PCs for PCA 2 - 4 

DWT wavelt db1, db4, sym2, sym4, 
coif1, coif3, bior3.5 

 decomposition levels 2, 4 

 PCs for PCA 2 - 4 

Logistic Regression 
Solver newton-cg, lbfgs, saga 

C 10-2 - 102 

Elastic Net 
α 10-5 - 103 

L1 ratio 0 - 1 

 


