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Abtract 

The cost structure and geometry freedom of laser powder bed fusion (PBF-LB/M) holds great potential for lightweight-
capabilities, customization and on-demand manufacturing of metal parts. Obstacles currently exist in first time right 
manufacturing and reliable reproducibility under changing process conditions. Reasons are the many setting variables 
(laser parameters, process parameters, scan strategy) and disturbance variables (powder batch, operator, ambient 
conditions), which have a difficult to quantify influence on the quality characteristics of the component (warpage, surface 
roughness, porosity).  
Compared to the so far widespread experience based parameterization of the process, statistical modeling has great 
potential for describing and understanding quantitatively the effects of the setting- and disturbance variables on the 
quality characteristics. The influence of scan strategy and laser parameters on the warpage and surfaces of PBF-LB/M-
components is evaluated on cantilever-like bridge specimens according to an optimized experimental plan. The relation 
between setting variables and quality characteristics is quantified in a linear model approach and its predictive power is 
evaluated. 
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1. Introduction 

In the PBF-LB/M, there are many setting variables in the various steps of the process chain. Many of them 
can be set specifically and with good repeatability with a low ease of adjustment. However, many variables 
have a concurrent influence on the production result and these parameters must be individually adjusted to 
each other. To make matters worse, the influence of the process parameters on the quality characteristics is 
also strongly influenced by the geometry (parameters) of the component. This impedes the financially sensible 
manufacturing tasks, however, which are primarily small quantities (first time right). 

In order to be able to assess whether first time right production is possible and which parameterization is 
suitable, several partial questions must be answered beforehand: For example, it is relevant to evaluate the 
quantity of influence of the geometry parameters compared to the process parameters on the various quality 
characteristics of the component. This is because in first time right manufacturing, the geometry changes from 
component to component. Furthermore, the question arises as to which process parameters have the greatest 
influence on the respective quality characteristics: is it sufficient to adjust a few influential process parameters 
to each other and to leave the remaining parameters at standard values? 

Two important target parameters for additive components are warpage and surface roughness: 
Manufacturing defects caused by warpage are a common reason why additive manufacturing of a particular 
part fails. Poor surface properties require expensive and time consuming post processing steps. 

This work investigates whether the use of statistics-based modeling methods (linear regression models) is 
a suitable tool to quantify the influence of different geometric and process parameters on the quality 
characteristics warpage and surface roughness. Additionally this knowledge is systematized in such a way that 
it can be used for predictions of optimized parameter combinations for new components. 

2. State of the art and research 

2.1. Quality characteristics for additively manufactured components 

Next to Electron Beam Melting (EBM), the Laser Powder Bed Fusion (PBF-LB/M) process is primarily used 
for the additive manufacturing of metals. Due to high industrial interest and the associated intensive research, 
this manufacturing technology has been significantly developed in recent years and is now capable of 
producing high strength components with complex geometries [Bartlett 2019]. However, due to the high 
energy input of the laser during the melting of the metal powder, anisotropic residual stresses are formed, 
which can result in distortion, reduced geometric dimensional accuracy and delamination [Masoomi 2017]. 
Whether a component can be manufactured and, if so, what geometric dimensional accuracy is achieved 
depends largely on the induced residual stresses. The associated distortion is a significant criterion for 
component quality and the general acceptance of additive manufacturing of metal components. The 
formation of residual stresses can be influenced by support structures, process parameters (e.g. laser power, 
scanning speed), exposure strategy, material properties and component geometry [Bartlett 2019], which have 
complex interdependencies. Residual stresses can be reduced mainly by optimizing support structures and 
adjusting exposure strategies (arrangement of individual scan vectors) [Masoomi 2017]. In addition to the use 
of build plate heating, shorter scan vectors, for example, also lead to a smaller temperature gradient and thus 
to less thermally induced residual stresses [Kruth 2012] [Parry 2016].  

In the production of overhangs and bridge structures, the achievable surface finish also plays a major role. 
This depends mainly on the overhang angle (90°: orthogonal to the build direction, 0°: lying in the build 
direction) as well as the choice of process parameters. Recent studies show that a roughness of Ra=12 µm is 
currently achievable [Xiang 2019]. Whip investigated the dependence of surface roughness on laser 
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parameters [Whip 2019]. The dependency can be explained by an increase in the size of the melt pool at 
smaller overhang angles [Sih and Barlow 2004]. Due to the lower thermal conductivity of the powder than in 
the fused state, the melt pool decreases above a critical size [Gatto 2014], causing surface defects. At the same 
time, the resulting heat accumulation causes increased warpage [Wang 2013]. Therefore, a material-
dependent critical angle between 35° and 45° is introduced in the literature [Pakkanen 2016, Cloots 2017, 
Gebhardt 2019]. 

2.2. Development of manufacturing parameters 

In addition to the actual component geometry, the manufacturing process depends on a large number of 
adjustable process parameters. [Rehme 2010] identifies around 150 influencing variables, with the actual 
process parameters having a primary influence on the manufacturability of overhangs. These can be divided 
into system and component parameters [Gebhardt 2019]. Above all, the component parameters are 
determined by the local exposure strategy and the associated control of the scan vectors. Thus, the local 
energy input can be decisively controlled. A distinction is made between line energy [Wang 2013], area energy 
[Jiang 2020] and volume energy [Cloots 2017, Chen 2017]. [Chen 2017] was able to prove the influence of 
volume energy on the melt pool dimension. Also, the increasing irregularities in the melt pool shape at smaller 
overhang angles could be shown [Xiang 2019]. In general, efforts are currently being made to minimize the 
energy density introduced in the overhangs [Lin 2019, Shi 2019, Cloots 2017]. This makes it difficult to merge 
adjacent orbits [Mertens 2014, Chen 2017, Calignano 2020]. An iterative, experiment based approach is 
currently proposed for determining suitable parameter combinations [Chen 2017]. Suitable parameter 
combinations are usually combined into machine and material specific parameter sets. These always represent 
a trade-off, a geometry-specific adaptation of the parameters usually does not take place. 

For the production of overhangs, different exposure strategies have also been investigated [Shi 2019, 
DePond 2018] whereby for overhang angles smaller than 45°, standard hatch exposure provides the worst 
results. Better results were obtained using island-hatch strategies. Multiple exposures [Shi 2019, Jiang 2020] 
with lower energy input or using scan vectors parallel to the overhang [Cloots 2013, Cloots 2017, Chen 2017] 
also improve the results. 

2.3. Modeling in PBF 

In particular, the combination of microscopic and macroscopic effects makes physics based modeling 
approaches for PBF-LB/M difficult: approaches that pursue sufficiently accurate process simulation are often 
too computationally intensive to scale up to the millions of individual scan vectors in an additively 
manufactured component. 

Statistical design of experiments (DoE) and regression analysis, which is frequently used in this context, 
supports the description of complex interrelationships of individual parameters by providing a systematic 
approach to system and process analysis using statistical methods [Wember 1999, Kleppmann 2008]. In the 
field of laser beam melting, such an investigation of correlations between parameters and quality 
characteristics is currently hardly common. However, initial findings on interactions of the influencing variables 
have already been shown [Huxol 2019], although earlier work using DoE was unable to achieve optimization 
due to insufficient knowledge of the parameters [Huxol 2017]. In principle, it is therefore recommended to 
evaluate the parameter space first in a screening phase [Huxol 2019]. Other works were able to demonstrate 
improvements in the laser steel melting process using DoE and regression models [Calignano 2014, Charles 
2019, Cloots 2017, Piscopo 2019, Sun 2013]. 



 LiM 2021 - 4 

3. Experimental setup 

In this work, specimens are manufactured by varying various parameters and then determining the quality 
characteristics of warpage and surface roughness. Subsequently, regression models are built to predict 
warpage and surface roughness. The varied parameters include geometry parameters of the specimens, 
parameters of the exposure strategy during slicing and hatching and the laser parameters during 
manufacturing. On the one hand, an attempt is made to select parameter combinations in such a way that the 
specimens can also be successfully manufactured, and on the other hand to cover as large a test area as 
possible in order to derive transferable statements. For this purpose, a central test plan is built up around a 
set of standard parameters already known for the material and the machine and is supplemented by corner 
points and repeat samples. The test plan is set up manually. 

3.1. Specimens and measurements 

A bridge-like specimen geometry is used for the experiments (cf. Figure 1). This consists of a base and a 
bridge section and functions like a cantilever: The residual stresses introduced into the specimen during 
fabrication of the bridge section result in distortion of the bridge section after wire erosion. The width of all 
bridge specimens is 2 mm. The feet of all specimens are 10 mm high and in their cross-section, each foot is 
exposed by exactly three individual scan vectors during fabrication. The order of this exposure is constant 
across all layers and is the same for all specimens. All feet are exposed with the same laser parameters: Laser 
power P = 100 W, scan speed v = 625 mm/s, focus diameter d_f = 100 µm.  

In the bridge area itself some parameters are varied: 
• Geometry: bridge length l (1 mm – 5 mm), bridge heigth h_1 (0,5 mm – 2 mm) 
• Production preparation: hatch distance d (70 µm – 130 µm), scan strategy (vectors orthogonal to bridge 

S_CHkonvQ, vectors rotated by 45°, direction alternating 90° from layer to layer S_Chkonv) 
 

Fig. 1. Design, geometric parameters and parameters of the scan strategy of the used specimens. 
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Figure 2 shows which variables are measured on the specimens after fabrication and separation from the 
build plate by wire electronic discharge machining (wire EDM). The warping angle α (Fig. 2 (a)), line roughness 
and surface roughness (Fig. 2 (b)) are determined. 

For the determination of the warping angle α, z-stack images (depth of field) of the laterally lying samples 
are taken using a digital microscope (Zeiss Smart Zoom 5, 34x zoom). The angles α are not measured directly. 
Instead, distances a, b, and c are measured in the microscope images. The warping angle α is calculated from 
these quantities according to formula (1). 

                                                                              α=2· tan-1 b-a
2·c

                                                                                 (1) 

The surface roughness is determined on a selection of 47 specimens from build job B (see section “3.2 
Manufacturing”) using a Keyence VR 5200 Profilometer (fringe projection). In each case, a line measurement 
of the roughness (measuring line 4 mm long) and an area measurement (1 mm x 2 mm) are carried out (cf. 
Figure 2 (b)) and Rz, Ra, sz, sa are determined from these within the Keyence software. 

Fig. 2. (a) measured lines to calculate the warpage angle α; (b) line and area for measurement of the surface roughness 

3.2. Manufacturing 

The specimens are manufactured on a Concept Laser M2 PBF/LB-M system from 2009 with retrofitted Focus 
Shift optics (minimum focus diameter: 55 µm). All specimens are produced in two build jobs (build job A, build 
job B) with identical arrangement on the build plate and directly one after another (same sieve batch of the 
powder). In a further build job (build job C), a selection of seven bridge specimens is produced with a time of 
more than six months inbetween to build job A and B using a different sieve batch to evaluate the predictive 
power of the model formed. The arrangement of the components on the build plate in build jobs A and B is 
shown in Figure 3 (a), the layer thickness is 25 µm in all build jobs. The material used is Ti6Al4V powder 
(manufacturer: TLS, order no. 1100710045). The particle size distribution of the batch sieved directly before 
production and characteristic values for the particle shape are shown in Figure 3 (b).  
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Fig. 3. (a) Specimens on the build job; (b) characteristics of the used powder 

 
Following manufacturing parameters are deliberately varied: 
• Component alignment: Rotation of the component around the z-axis (0° (longitudinal to recoater) - 90°) 
• Laser parameters: Line energy E (0.1 J/mm - 0.22 J/mm), scan speed v (700 mm/s - 1500 mm/s), focus 

diameter d_f (55 µm - 150 µm) 
In the experimental plan, the line energy E is varied specifically. However, the scanning speed v and laser 

power P are set on the PBF-LB/M machine. The laser power P is calculated from the line energy E and the 
scanning speed v according to formula 2 and thus lies between 70 W and 330 W: 

                                                                                   P=E·v (2) 

The specimens are positioned on the build plate in a grid and are randomly assigned to the individual 
positions in the grid. After production, the specimens are detached from the build plate by wire EDM at a 
height of 0.5 mm above the build plate. 

3.3. Modeling 

The modeling is done using the software Cornerstone (camline GmbH, version 7.1). The modeling approach 
is linear regression with maximum quadratic terms. The approach makes model and scatter predictions with 
a 95% confidence interval. 

This model approach was chosen because it can quantify possible correlations with relatively few individual 
measurements / samples. Furthermore, it is possible to make a direct statement about the expected scatter 
range for predictions based on this model. The approach also provides the possibility to check whether factors 
that are recorded but not considered in the model (e.g. component position on the build plate) have a 
systematic influence on the investigated target variables. 

Overall, the performance of linear regression models in predicting the warping angle α (representative of 
warpage) is investigated by building four different models based on different data sets. A fifth model is built 
for the prediction of surface roughness. Table 1 lists the models considered and their main characteristics. 
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Table 1. Overview of the models taken into account. 

model name order database prediction of 

Model 1 quadratic build job A warping angle 

Model 2 quadratic build job B warping angle 

Model 3 linear w/ interactions build job A warping angle 

Model 4 linear w/ interactions build job B warping angle 

Model 5 quadratic build job B roughness 

 
The same procedure is always used for the formation of the individual models 1 - 4: First, all actively varied 

input variables are included in the model formation. Then, the model is optimized by using Cornerstone's 
automatic model optimization tool with regard to the parameters "Adj R-Square" (What proportion of the 
occurring scatter can be explained by the model?) and "RMS Error" (Error to be expected in a forecast).  

This procedure is also used for model 5 (roughness parameters), but in addition a Box-Cox plot is derived 
and the most favorable transformations are applied to the model functions for the target parameters Rz, Ra, 
sz and sa.  

Models 1 - 4 are examined to determine whether the same parameters are included and whether they are 
attributed to a comparably large influence on the target variable of warping angle α (and thus residual stresses 
/ distortion) by the respective model. From this, it is evaluated whether the mean of the linear regression 
models is also reliably suitable for identifying the parameters with the greatest influence on a target variable. 

Furthermore, it is tested how well the models are suited for quantitative predictions of target variables. In 
each of the models 1 - 4, the parameter combinations that were used for the production of the respective 
components from build job C are used. Through the respective model, the expected warping angle α with its 
expected scatter limits is predicted. Subsequently, α measured after fabrication of the specimens is compared 
to these predictions. 

Model 5 is used to try to find the explanatory parameters for the surface roughnesses that occur. The 
roughness parameters Rz, Ra, sz and sa are taken into account. 

 

4. Results 

In general, the build jobs A and B show almost identical distributions of the measured warping angles α. 
This indicates a very good reproducibility under identical process conditions. In the following, first the 
prediction of the warping angle by the different models and then the modeling for surface roughness will be 
discussed. 

4.1. Warping angle 

All four models show a very high „Adj R-Square“ of more than 85% and indicate the average error to be 
about 1° (cf. Table 2). Thus, all four models hardly differ in this case with respect to their parameters „Adj R-
Square“ and „Pure Error“. If we compare the two quadratic models, Model 1 and Model 2, we find that in both 
models hatch distance and scan strategy are identified as parameters with the greatest influence on the 
warping angle. In the linear models Model 3 and Model 4, scan strategy, hatch distance and bridge length l 
appear as the three most influential parameters.  
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Table 2. Key features of the resulting models. 

model 
name 

Adj R-
Square 

Pure 
Error 

Degrees of 
freedom 

Three most significant Parameters (most influencial first) 

Model 1 0,894 0,989 > 125 hatch distance, scan strategy, bridge length l 

Model 2 0,877 1,098 > 130 hatch distance, scan strategy, bridge heigth h_1 

Model 3 0,888 0,989 > 125 scan strategy, hatch distance, bridge length l 

Model 4 0,873 1,098 > 135 scan strategy, bridge length l, hatch distance 

 
The prediction of the expected warping angle α for specimens from build job C succeeds predominantly 

well. Figure 4 shows the predictions as well as the expected error intervals of the four models for α of seven 
specimens manufactured in build job C and compares them with the real angles measured on these specimens. 
Qualitatively, all models reproduce the real measured α very well. Quantitatively, it can be seen that the 
measured angles often lie outside the specified error intervals of the individual models.  

 

Fig. 4. Comparison between the predictions of the models 1 to 4 for the warping angle alpha and the measured warping angle of 
specimens built in build job C. 
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4.2. Surface characterization 

In contrast to the prediction of α, only models with very low „Adj R-Square“ result for the modeling of the 
relationships between manufacturing parameters and surface roughness for the variables Rz, Ra, sz and sa. 
Thus, none of the models is suitable for a prediction of these surface parameters. Also a transformation of the 
models hardly improves this value. Table 3 shows the parameters for model 5 for the prediction of the 
transformed Rz, Ra, sz and sa. 

Table 3. Adj R-Square for the surface parameters Rz, Ra, sz, and sa in model 5. Thus, none of the models is significant. 

predicted Adj R-Square degree of 
freedom 

1 / Rz 0,212 > 30 

Log Ra 0,126 > 30 

1 / sa 0,247 > 30 

1 / sz 0,495 > 30 

 

5. Discussion 

The experiments carried out show that even horizontal bridge elements can be manufactured if the process 
parameters are set specifically and the overhang area is supported on both sides. 

In particular, it is striking that the warping angle hardly depends on the laser parameters, but primarily on 
the alignment of the scan vectors and the hatch distance. This is in accordance with the literature (e.g. [Parry 
2016]). Just by adjusting the alignment of the scan vectors, a bridge with more than twice as long overhang 
area (jobC_39, jobC_40) can be manufactured with the same warpage as significantly shorter bridges with 
conventional arrangement of the hatches (jobC_02, jobC_03). 

Furthermore, linear regression models seem to be very suitable to predict trends in the correlations 
between parameters and quality characteristics in PBF-LB/M and to find out which parameters have the 
greatest influence on various target variables. However, the confidence intervals estimated by the models in 
particular should be judged with caution. Especially at the edge of the considered parameter space, the 
predictive ability of the models may become significantly worse. Also, the use of regression models to 
investigate relationships between parameters and quality characteristics does not seem to be equally suitable 
for all quality characteristics. While for the warping angle α very good models could be found, the approach 
was not successful for surface roughness. 

Several reasons can be considered for this: In modeling for surface roughness, there could be another 
source of scatter that was not taken into account in the model because it is not caused by the varied input 
variables. Similarly, it is conceivable that the surface parameters Rz, Ra, sz, and sa already scatter so much at 
the specified lengths that possible effects are to small to be identified. Likewise, it is possible that the 
parameters most influential for the surface roughness were not varied in a sufficiently large interval that their 
changes have a sufficiently large influence on the measured surface characteristics. 
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6. Outlook 

In In the present work, the manufacturing results from two build jobs (A and B) were each used separately 
in the modeling, and samples from a third build job (C) were used to validate the predictions. In the future, it 
would be interesting to determine the prediction capabilities of the model by cross-validation instead of using 
a separate build job. This could either minimize the sample size and associated evaluation needed or create a 
more accurate model while maintaining the same predictive power. 

Furthermore, it is planned to manufacture further bridge specimens under comparable conditions, but not 
to separate them from the build plate. Instead, the residual stresses on the undeformed specimens are to be 
measured by X-ray diffraction and correlated with the measured warping angles of comparable specimens. 
This would make it possible to quantify the residual stresses in SI units, even though only the easy-to-measure 
warping angle needs to be measured for future predictions. 

An important follow-up step is also the investigation of the transferability of the results to other materials 
and PBF-LB/M systems. Further test series are necessary for this purpose. Likewise, the suitability of the means 
of modeling should also be investigated for other target variables, such as porosities in the material. 
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Appendix A. Coefficient Tables of Model 1 and Model 2. 

Model 1: Term Coefficient Std Error  Model 2: Term Coefficient Std Error 

Constant -7.5381 1.8541 Constant -5.4718 2.7366 

Scan speed v [mm/s] -0.0014 0.0003 Scan speed v [mm/s] -0.0028 0.0012 

Line energy E [J/mm] -8.6043 3.1131 Line energy E [J/mm] 31.8288 23.6124 

Scan strategy <1 df>  Spot diameter [µm] 0.0666 0.0386 

  ScStr_B_Chkonv -0.5623 0.4563 Scan strategy <1 df>  

http://dx.doi.org/10.1177/0954405412437085
http://dx.doi.org/10.1016/j.addma.2016.05.014
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  ScStr_B_CHkonvQ 0.5623 0.4563   ScStr_B_Chkonv 1.2472 0.7061 

Z rotation angle [°] -0.0557 0.0266   ScStr_B_CHkonvQ -1.2472 0.7061 

Bridge length l [mm] 0.8332 0.0855 z rotation angle[°] 0.0391 0.0189 

Bridge heigth h_1 [mm] 9.2723 2.1918 Bridge length l [mm] 0.8829 0.0990 

Hatch distance [µm] 0.1239 0.0252 Bridge height h_1 [mm] 2.1751 2.2256 

san speed [mm/s] * scan strategy <1 df>  Hatch distance [µm] -0.0247 0.0448 

  ScStr_B_Chkonv -0.0010 0.0002 Scan speed [mm/s] * line energy [J/mm] 0.01347 0.0075 

  ScStr_B_CHkonvQ 0.0010 0.0002 Line energy [J/mm]^2 -168.4053 75.6400 

Bridge length l [mm] * scan 

strategy 

<1 df>  Scan strategy * line energy [J/mm] <1 df>  

  ScStr_B_Chkonv 0.3884 0.0764   ScStr_B_Chkonv -14.9226 2.8872 

  ScStr_B_CHkonvQ -0.3884 0.0764   ScStr_B_CHkonvQ 14.9226 2.8872 

Hatch distance [µm] * scan 

strategy 

<1 df>  Spot diameter [µm]^2 -0.0003 0.0001 

  ScStr_B_Chkonv 0.0228 0.0045 Scan strategy * spot diameter [µm] <1 df>  

  ScStr_B_CHkonvQ -0.0228 0.0045   ScStr_B_Chkonv -0.0163 0.0053 

Hatch distance [µm] * z rotation 

angle [°] 

0.0007 0.0003   ScStr_B_CHkonvQ 0.0163 0.0053 

Bridge heigth h_1 [mm]^2 -1.4941 0.5027 Bridge length l [mm] * scan strategy <1 df>  

Bridge heigth h_1 [mm] * hatch 

distance [µm] 

-0.0589 0.0262   ScStr_B_Chkonv 0.5074 0.0916 

     ScStr_B_CHkonvQ -0.5074 0.0916 

   Bridge heigth h_1 [mm] * scan strategy <1 df>  

     ScStr_B_Chkonv 0.8891 0.2929 

     ScStr_B_CHkonvQ -0.8891 0.2929 

   Hatch distance [µm] * scan strateg <1 df>  

     ScStr_B_Chkonv 0.0211 0.0055 

     ScStr_B_CHkonvQ -0.0211 0.0055 

   Bridge heigth h_1 [mm] * z rotation angle [°] -0.0394 0.0209 

   Bridge heigth h_1 [mm]^2 -2.3382 0.7625 

   Bridge heigth h_1 [mm] * hatch distance [µm] 0.0783 0.0416 
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Appendix B. Coefficient Tables of Model 3 and Model 4 

Model 3: Term Coefficient Std Error  Model 4: Term Coefficient Std Error 

Constant -6.2754 1.7183 Constant -0.6184 1.5804 

Scan speed v [mm/s] -0.0009 0.0002 Line energy [J/mm] -7.7602 2.9876 

Line energy E [J/mm] -7.1703 3.1251 Spot diameter [µm] 0.0016 0.0061 

Scan strategy <1 df>  Scan strategy <1 df>  

  ScStr_B_Chkonv -0.5997 0.4675   ScStr_B_Chkonv 1.2099 0.7173 

  ScStr_B_CHkonvQ 0.5997 0.4675   ScStr_B_CHkonvQ -1.2099 0.7173 

Z rotation angle [°] -0.0241 0.0097 Z rotation angle [°] 0.0356 0.0144 

Bridge length l [mm] 0.8181 0.0872 Bridge length l [mm] 0.1482 0.2752 

Bridge height h_1 [mm] 5.1730 1.4885 Bridge height h_1 [mm] -0.4967 0.8104 

Hatch distance [µm] 0.1325 0.0222 Hatch distance [µm] 0.0667 0.0071 

Scan speed [mm/s] * scan 

strategy 

<1 df>  Scan strategy * line energy [J/mm] <1 df>  

  ScStr_B_Chkonv -0.0009 0.0002   ScStr_B_Chkonv -14.9056 2.9297 

  ScStr_B_CHkonvQ 0.0009 0.0002   ScStr_B_CHkonvQ 14.9056 2.9297 

Bridge length l [mm] * scan 

strategy 

<1 df>  Scan strategy * spot diameter [µm] <1 df>  

  ScStr_B_Chkonv 0.3803 0.0782   ScStr_B_Chkonv -0.0167 0.0054 

  ScStr_B_CHkonvQ -0.3803 0.0782   ScStr_B_CHkonvQ 0.0167 0.0054 

Hatch distance [µm] * scan 

strategy 

<1 df>  Bridge length l [mm] * scan stategy <1 df>  

  ScStr_B_Chkonv 0.0223 0.0045   ScStr_B_Chkonv 0.4945 0.0928 

  ScStr_B_CHkonvQ -0.0223 0.0045   ScStr_B_CHkonvQ -0.4945 0.0928 

Bridge heigth h_1 [mm] * z 

rotation angle [°] 

0.0274 0.0115 Bridge heigth h_1 [mm] * scan strategy <1 df>  

Bridge heigth h_1 [mm] * 

hatch distance [µm] 

-0.0590 0.0207   ScStr_B_Chkonv 0.8899 0.2977 

     ScStr_B_CHkonvQ -0.8899 0.2977 

   Hatch distance [µm] * scan strategy <1 df>  

     ScStr_B_Chkonv 0.0223 0.0055 

     ScStr_B_CHkonvQ -0.0223 0.0055 

   Hatch distance [µm] * z rotation angle [°] -0.0003 0.0001 

   Bridge heigth h_1 [mm] * bridge length l [mm] 0.4780 0.1874 

      

 


